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Abstract 

The Homotopy Perturbation Method (HPM) is a well-known 

mathematical approach utilized to solve many different type of 

differential equation. This method involves constructing a 

homotopy, a continuous transformation, between a known 

initial problem and the desired nonlinear problem. Perturbation 

terms are then introduced to iteratively approximate the 

solution. In this paper, we explore the fundamentals of the 

HPM and its application in tackling nonlinear problems across 

various fields, including physics, engineering, and 

mathematical modelling. Through illustrative examples and 

case studies, we demonstrate the effectiveness and versatility 

of the HPM in providing accurate solutions to nonlinear 

problems that are otherwise challenging to solve using 

traditional methods. Additionally, we discuss the advantages, 

limitations, and future directions of the HPM in non-linear 

space. 

 

1. Numerical Analysis:  

Numerical Analysis is a field of mathematics that focuses on solving mathematical problems 

through computational methods. Its primary objective is to address various mathematical 

challenges by employing arithmetic operations and algorithms. One of the fundamental tasks 

of numerical analysis is finding roots of algebraic equations, which involves determining the 
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values of variables that satisfy the equation. Additionally, it facilitates the calculation of 

derivatives of functions, allowing for the determination of the rate of change of a function at a 

given point. Moreover, numerical analysis is instrumental in the integration of functions, 

enabling the computation of definite integrals and the calculation of areas under curves. It is 

also extensively used in solving both ordinary and partial differential equations, which are 

ubiquitous in various scientific and engineering fields. By discretizing these equations and 

applying numerical methods, approximate solutions can be obtained, aiding in the 

understanding and prediction of complex physical phenomena. We have the significant reward 

of numerical analysis is its ability to offer approximate solutions to problems that may not have 

exact analytical solutions. This is particularly valuable in scenarios where analytical methods 

are infeasible or impractical. Furthermore, numerical analysis allows for the optimization of 

computational resources by adjusting parameters such as step size to minimize errors in the 

results. In essence, numerical analysis plays a vital role in modern mathematics, science, and 

engineering by providing computational tools and techniques to tackle a wide range of 

mathematical problems efficiently and accurately (see [1]-[9]). 

The structure of this article is organized into seven distinct sections. Section 1 provides a 

definition of Numerical Analysis, outlining its fundamental concepts and methodologies. 

Moving forward, Section 2 delves into the Applications of Numerical Analysis, exploring its 

practical significance across various fields. In Section 3, the focus shifts to the discussion of the 

generalized Burgers equation, elucidating its mathematical formulation and significance in fluid 

dynamics and nonlinear physics. Section 4 introduces the Homotopy Perturbation Method 

(HPM), presenting its principles and techniques for solving nonlinear problems. This section 

also outlines the procedure for applying HPM, detailing its step-by-step approach. Section 5 

demonstrates the application of HPM in solving the generalized Burgers equation through a 

basic example, showcasing the method's effectiveness in obtaining approximate solutions. In 

Section 6, specific cases derived from the generalized Burgers equation are examined, 

providing insights into the equation's behavior under various conditions. Lastly, Section 7 

serves as the conclusion of the paper, summarizing key findings and insights gleaned from the 

discussion. Additionally, it discusses the implications of the research and avenues for future 

exploration in the field. 

2. Applications of Numerical Analysis:  

Numerical analysis holds a critical position within mathematics, exerting significant influence 

across diverse scientific and technological realms, particularly in addressing differential 

equations. A plethora of methods exist in literature for tackling these equations, encompassing 

techniques such as the Method of Lines, Finite Difference Method, Gradient Discretization 
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Method, Finite Element Method, Finite Volume Method, Euler's Method, Spectral Method, 

Improved Euler Method, Runge-Kutta Method, Parallel-in-Time Methods, Finite Differences, 

Galerkin Methods, Adams–Bashforth Methods, Homotopy Analysis Method, Adomian 

Decomposition Method, and more. This paper specifically concentrates on the Homotopy 

Perturbation Method and its utilization, with a primary focus on solving nonlinear equations. 

These nonlinear differential equations are fundamental in elucidating a myriad of physical 

phenomena. 

3. Generalized Burgers Equation: 

Calculus has experienced significant growth in acceptance and status over the past few years 

across several fields of engineering and science. Its increasing the number of requests highlights 

calculus's efficacy in providing enhanced mathematical mockups for understanding real-world 

substances and developments. Mathematical modeling, facilitated by calculus, plays a crucial 

role in delineating physical and natural phenomena, thereby aiding in problem analysis. The 

literature on calculus continues to expand rapidly due to ongoing global research efforts. Its 

impact spans numerous areas, including mechanics, biology, electricity, fluid dynamics, control 

theory, heat conduction, sports, viscoelasticity, image processing, and astrophysics (Ros, 2008; 

Husain, 2019). Consequently, calculus of integer order permeates every dimension of research 

and technology. 

Ordinary differential equations (ODEs) include real integer order differential operator and often 

arise when solving various physical marvels. However, in many cases, ODEs have exact 

answers. Consequently, numerous methods are established to find the approximate solutions 

accurately and efficiently. Among these methods, the Homotopy Perturbation Method (HPM) 

stands out for its simplicity and superior convergence rate. Introduced by He (He, 1999), HPM 

has become widely utilized for solving nonlinear problems due to its effectiveness. One of its 

key advantages lies in the rapid convergence of the series solution, often requiring only a few 

iterations to achieve highly accurate results. 

In this study, we explore the Burgers equation and its outcome using the homotopy perturbation 

method. That equation, initially presented by Bateman (Bateman, 1915) and further studied in 

1948 by Burgers, represents a fundamental equation in fluid dynamics and nonlinear partial 

differential equations. For the detail about the Burgers equation (see [10]-[22]) can be expressed 

as: 
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where, a is any arbitrary constant. The precise solution to the aforementioned equation can be 

derived using various methods such as the Cole-Hopf transform method, the tanh-coth method, 

and the Exp-function method etc. 

In this paper, our focus will be on examining a generalized Burgers equation formulated in 

terms of the generalized fractional derivative. 

 
2

2

mv v v
av c

  

  
 

  
      (2) 

     with  

 ( ,0) ( ),v g    .     (3) 

     Where  m N . 

We denote equation (2) as the generalized Burgers equation. To obtain an approximate 

symmetric solution under the given condition (3), we utilize the widely recognized homotopy 

perturbation method (HPM) to solve equation (2). 

4. Homotopy Perturbation Method (HPM): 

The HPM is a powerful mathematical procedure for finding the solution of nonlinear 

differential equations. It is constructed on the idea of homotopy, which is a continuous 

transformation from one equation to alternative. Here's a detailed explanation and solution 

procedure for applying homotopy perturbation method (HPM): 

(a) Formulate the Differential Equation (DE):  

Start with the nonlinear differential equation you want to solve. It could be an ordinary 

differential equation (ODE) or a partial differential equation (PDE). Let's denote this equation 

as  

  , , , , , 0,F x u u u u n      

where u is the dependent variable, and u′, u′′, etc., denote its derivatives with respect to the 

independent variable x. 

Construct the Homotopy Operator: Introduce an auxiliary parameter τ and construct a 

homotopy operator L such that: 

 

          ; 1 , 0L u x G u x F x u x            (4) 

Here,   ,  F x u x  is the original differential equation, and G(u(x)) is a known function that 

makes the equation linearly solvable. 

Assume the Perturbation Series Solution: Assume a solution u(x) in the form of a perturbation 

series:  



 
 

42 

   
0

n

n

n

u x u x 




           (5) 

where  nu x  are unknown functions to be determined. 

(b) Substitute the Series Solution into the Homotopy Operator:  

Substitute the perturbation series solution into the homotopy operator equation   ;  0L u x    

and expand it in powers of τ. Equate coefficients of like powers of τ to obtain a sequence of 

equations for each order n. 

(c) Solve the Perturbation Equations:  

Solve the sequence of equations obtained in the previous step iteratively to find successive 

approximations  nu x . This can be done using various techniques such as power series 

methods, iteration methods, or numerical methods. 

(d) Convergence Analysis:  

Examine the convergence behavior of the series solution. Determine the range of validity and 

accuracy of the solution by investigating the convergence of the series. It's important to check 

the convergence criterion to ensure the solution is reliable. 

(e) Check for Special Cases and Simplifications:  

Depending on the problem's complexity, you may need to consider special cases or make 

simplifications to facilitate the solution process. This could involve choosing appropriate 

boundary or initial conditions or making assumptions to simplify the problem. 

(f) Verify the Solution:  

Once the solution is obtained, verify it by substituting it back into the original differential 

equation to ensure that it satisfies the equation within the desired accuracy.  

By following these steps, you can apply the Homotopy Perturbation Method to solve a wide 

range of nonlinear differential equations efficiently and accurately. It's a flexible and robust 

method, particularly suitable for problems where traditional analytical or numerical techniques 

may fail. However, careful consideration of convergence properties and suitable initial 

approximations is essential for obtaining accurate solutions. 

(g) Generalized Burgers equation and its Solution: 

When confronting linear or non-linear problems, researchers have contributed a plethora of 

methods over time to address these challenges. Among the array of techniques available, the 

Homotopy Perturbation Method (HPM) and other methods (see [23]-[27]) emerges as a 

particularly robust tool for seeking solutions. In this section, we delve into the intricacies of the 
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HPM. Our intention is to apply this method to the specified problems outlined in equations (2) 

and (3). Consequently, we proceed to visualize the function v in the following manner 

( , ; ) : [0, ] [0,1]v T R       

such as 

  0

2

2

( , ; ), (1 ) ( , ; ) ( , )

( , ; ) ( , ; )
( , ; ) ( , ; ) 0,m

H v D v D u

v v
D v av c

 



         

     
      

 

    

  
    

  

   (6) 

Here,   represents an embedding parameter, and 0 ( , )v    epitomizes an primary 

approximation. Now, by employing the preceding calculation, equation (4), we obtain: 

 

0

2

0 2

( , ; ) ( , )

( , ; ) ( , ; )
( , ) ( , ; ) .m

D v D u

v v
D u av c

 



    

     
     

 



  
   

  

    (7) 

Now, putting 
0

( , ; ) ( , )l

l

l

v v     




  in equation (5), we get 

0 0

0 0

2

2
0 0

( , ) ( , ) ( , ) ( , )

. ( , ) ( , ) .

m

k k

k k

k k

k k

k k

k k

D v D u D u a v

v c v



            

     
 

 

 

 

 

  
    

 

    
    

    

 

 

   (8) 

       By attempting to equivalence the coefficients of the corresponding powers of   in equation 

(6), we obtain: 

0

0 0: ( , ) ( , ),D v D u       

      and 

2
1 0 0

1 0 0 2

( , ) ( , )
: ( , ) ( , ) ( , ) ,m v v
D v D u av c 

   
      

 

   
    

  
 

      also 

2 1 01
2 0 0 1

2

1

2

( , )( , )
: ( , ) ( , ) ( , ) ( , )

( , )
,

m m vv
D v a v mv v

v
c



  
        

 

 




  

   
  






 

              On taking the integral, we get 

  0 0( , ) ( , ) ,v I D u      

or 
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 0 0( , ) ( , ),v u     

or 

0 ( ,0) ( ).v g   

     and 

0
1 0 0

2

0
12

( , )
( , ) ( , ) ( , )

( , )
, ( ,0) 0.

m v
v I D u av

v
c v

 

 
     



 




  
    

 




 

 

       also 

   1
2 0

2
1 0 1

0 1 2

( , )
, ( , )

( , ) ( , )
( , ) ( , ) ,

m

m

v
v I a v

v v
mv v c



 
   



   
   

 




   

  
 

  

 

After obtaining these values, we can determine the result v by substituting them into the 

following power series. 

2 3

0 1 2 3 ... vv v v v                (9) 

When obtaining the outcomes, if we consider the limit 1 ( , ; ),in v     we arrive at ( , )v    

as described in equations (9).  

(h) Particular Case: 

In this segment, we discuss the few particular cases of the generalized Burgers equation. We 

have considered the particular values of constant: 

 Example (1): 

The objective of this section is to apply HPM, led earlier, to crack a precise example of the 

generalized Burgers equation. Through the utilization of HPM, I aim to derive an approximate 

solution for this particular example of the generalized Burgers equation, as defined by (2) and 

(3). 

We have  

  
2

2

( , ) ( , )
( , ) ( , ) ,

v v
D v av c

   
   

 

 
  

 
   (10) 

with the initial condition 

2

0 0 .v u             (11) 

With the help of homotopy technique, we obtain 
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0

2

0 2

( , ; ) ( , )

( , ; )
( , .) ( , ; ) ( , ; )

D v D u

v v
D u av v c

 



    

  
        

 



 
  



 
 
 

   (12) 

Let us consider  

0

( , ; ) ( , ).l

l

l

v v     




         (13) 

Now, using the same approach defined in above part, we obtain 

0

0 0: ( , ) ( , ),D v D u       

      and coefficient of   

2
1 0 0

1 0 0 2

( , ) ( , )
: ( , ) ( , ) ( , ) ,

v v
D v D u av c 

   
      

 

   
    

  
 

       and coefficient of 2  

2 01
2 0 1

2

1

2

( , )( , )
: ( , ) ( , ) ( , )

( , )
,

vv
D v a v v

v
c



  
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 

 



  
   
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




 

       also coefficient of 3  

3 2 1
3 0 1

2

0 2
2 2

( , ) ( , )
: ( , ) ( , ) ( , )

( , ) ( , )
( , ) ,

v v
D v a v v

v v
v c



   
      

 

   
 

 

   
    

 

  
 

  

 

.

.

.

 

on integrate, we get 

0

0 0: ( , ) ( , ),v u      

      and 

2
1 0 0

1 0 0 2

( , ) ( , )
: ( , ) ( , ) ( , ) ,

v v
v I D u av c



   
      

 

    
     

   
 

                also 

2
2 01 1

2 0 1 2

( , )( , ) ( , )
: ( , ) ( , ) ( , ) ,

vv v
v I a v v c

    
      

  

    
     

    
 

 same the manner 
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3 2 1
3 0 1

2

0 2
2 2

( , ) ( , )
: ( , ) ( , ) ( , )

( , ) ( , )
( , ) ,

v v
v I a v v

v v
v c



   
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 

   
 

 

   
    

 

  
 

  

 

.

.

.

 

Once these values have been determined, the resulting value v can be acquired by substituting 

them into the power series (5), thereby yielding the sought-after solution. 

Example (2):  

The objective of this section is to apply HPM, led earlier, to crack a precise example of the 

generalized Burgers equation. Through the utilization of HPM, I aim to derive an approximate 

solution for this particular example of the generalized Burgers equation, as defined by (2) and 

(3). 

We have  

  
2

2

( , )
( , ) ,

v
D v c

 
 







      (14) 

with the initial condition 

2

0 0 .v u             (15) 

With the help of homotopy technique, we obtain 

2

0 0 2

( , ; )
( , ; ) ( , ) ( ., )

v
D v D u D u c  

  
       



  
 


  


   (16) 

Let us consider  

0

( , ; ) ( , ).l

l

l

v v     




         (17) 

Now, using the same approach defined in above part, we obtain 

 

0

0 0: ( , ) ( , ),D v D u       

      and coefficient of   

2
1 0

1 0 2

( , )
: ( , ) ( , ) ,

v
D v D u c 

 
    




  


 

       and coefficient of 2  
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2
2 1

2 2

( , )
: ( , ) ,

v
D v

 
  







 

       also coefficient of 3  

2
3 2

3 2

( , )
: ( , ) ,

v
D v c

 
  







 

.

.

.

 

By using the integration, we get 

 

0

0 0: ( , ) ( , ),v u      

      and 

2
1 0

1 2

( , )
: ( , ) ,

v
v I c  

  


 
  

 
 

                also 

2
2 1

2 2

( , )
: ( , ) ,

v
v I c

 
  



 
  

 
 

      

 same the manner 

2
3 2

3 2

( , )
: ( , ) ,

v
v I c

 
  






 
 
 

 

.

.

.

 

Once these values have been determined, the resulting value v can be acquired by substituting 

them into the power series (5), thereby yielding the sought-after solution. 

Conclusions:  

This document outlines an advanced approach aimed at investigating the generalized Burgers 

equation comprehensively by integrating its solution. The generalized Burgers equation holds 

significance in various fields, particularly in fluid dynamics and nonlinear partial differential 

equations. The study endeavors to delve deeper into this equation, seeking to establish a robust 

framework for understanding its behavior and solutions. The research commences by 

formulating theorems that are directly relevant to the generalized Burgers equation. These 
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theorems serve as foundational principles upon which subsequent analyses are built. They 

provide a theoretical framework that guides the investigation and interpretation of the equation's 

properties and solutions. Subsequently, the study employs the homotopy perturbation method 

(HPM) as a primary analytical tool to analyze the generalized Burgers equation. The HPM is a 

powerful mathematical technique known for its effectiveness in solving nonlinear problems. 

By applying this method, the research aims to obtain approximate solutions to the generalized 

Burgers equation that accurately capture its behavior under various conditions. The analysis 

involves a systematic examination of the equation's output using the HPM. This includes 

iteratively solving the equation to obtain successive approximations and evaluating the 

convergence and accuracy of the obtained solutions. Through this process, the research aims to 

gain insights into the behavior of the generalized Burgers equation and the effectiveness of the 

HPM in providing analytical solutions. Furthermore, the document presents distinct outcomes 

derived from the application of the HPM to the generalized Burgers equation. These outcomes 

are meticulously analyzed and interpreted to highlight the efficacy of the method in approaching 

analytical solutions for this specific scenario. By showcasing these results, the research aims to 

demonstrate the practical utility and applicability of the HPM in studying nonlinear partial 

differential equations like the generalized Burgers equation. In summary, this research 

represents a comprehensive effort to investigate the generalized Burgers equation using an 

enhanced analytical approach. By integrating theoretical principles, mathematical techniques, 

and practical analyses, the study aims to contribute to a deeper understanding of the behavior 

and solutions of this fundamental equation in fluid dynamics and nonlinear physics. 
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