# **Department of Civil Engineering**

| List | of | programs | in  | School | of | Engineering   | and | their | POs | &                 | PSOs |
|------|----|----------|-----|--------|----|---------------|-----|-------|-----|-------------------|------|
|      | 01 | programs | 111 | Denoor | 01 | Linginicering | una | unem  | 105 | $\mathbf{\alpha}$ | 1000 |

## 1. M.Tech Environmental Engineering

School of Engineering and Technology provides M. Tech. degrees in the following programmes:

# PROGRAM OUTCOMES OF M. TECH ENVIRONENTAL ENGINEERING

**PO1. Engineering knowledge:** An ability to carry out research investigation and give engineering solutions to solve practical problems pertaining to environmental engineering.

**PO2. Problem analysis:** An ability to write and compile technical report documents and deliver technical presentations acquiring good communication skills.

**PO3. Design/development of solutions**: An ability to demonstrate a degree of mastery over the area as per the specialization of the program, handle environmental engineering projects involving multidisciplinary fields.

**PO4. Conduct investigations of complex problems:** An ability to design systems and ecofriendly solutions associated with environmental engineering for sustainable infrastructure development.

**PO5. Modern tool usage**: An ability to apply modern engineering tools and software like EPANET, SEWER-CAD, etc in environmental engineering for simulation, data analysis and solving modern engineering problems.



# <u>M. TECH. ENVIRONMENTAL ENGINEERING</u>

# **Program Specific Outcomes:**

**PSO-1:** To excel in the core areas of environmental engineering such as waste remediation's, clean development mechanism, design water treatment units, atmospheric dynamics etc.

**PSO-2:** To develop and design sustainable infrastructure considering the global environmental challenges.

**PSO-3:** To understand the problems associated with complex environmental activities and provide solutions through appropriate technologies.

**PSO-4:** Understand the role legislation and policy drivers play in stakeholders' response to the environmental issues

| Paper Code      | CEE 501                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------|
| Paper Title     | Environmental Chemistry and Microbiology                                                       |
| Course outcomes | Course Learning Outcomes are as listed below:                                                  |
| CO 1            | To apply conventional and novel bacterial wastewater treatment processes for nutrient removal. |
| CO 2            | To understand the importance of various microbial processes in wastewater treatment.           |
| CO 3            | To assess the bacteriological status of water and aquatic systems.                             |
| CO 4            | To monitor the health of soils for desired value such as agricultural activity, forestry etc.  |



| Paper Code         | CEE 503                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Paper Title        | Air Pollution and Control                                                                                                        |
| Course<br>outcomes | Course Learning Outcomes are as listed below:                                                                                    |
| CO 1               | To classify and identify the sources of air pollutants and predict the effects of air pollutant on human health and environment. |
| CO 2               | To apply and relate the significance of various air pollution dispersion models.                                                 |
| CO 3               | To analyze the air quality and relate with air pollution regulation                                                              |
| CO 4               | To design various air pollution control equipment and evaluate its use.                                                          |

| Paper<br>Code      | CEE 505                                                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper<br>Title     | Municipal Solid Waste Management                                                                                                                                                                |
| Course<br>outcomes | Course Learning Outcomes are as listed below:                                                                                                                                                   |
| CO 1               | To identify and interpret the criteria for the classification of a substance as a solid/hazardous wastes.                                                                                       |
| CO 2               | To recognize waste minimization and source reduction, assess and describe the procedure for solid and hazardous waste identification and characterization and various waste processing options. |

| CO 3        | To define and elucidate the management, treatment and disposal of hazardous wastes. |
|-------------|-------------------------------------------------------------------------------------|
| <b>CO 4</b> | To apply ecological concepts in reclamation of degraded lands.                      |

| Paper<br>Code      | CEE 507                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper Title        | Environmental Impact Assessment                                                                                                                                                |
| Course<br>outcomes | Course Learning Outcomes are as listed below:                                                                                                                                  |
| CO 1               | To Assess the impacts of various projects based on EIA methodologies.                                                                                                          |
| CO 2               | To Identify the components of conflicts and the need of public participation in EIA.                                                                                           |
| CO 3               | To Analyse the concept of ISO 14000 and EA with reference to Life cycle of a product.                                                                                          |
| CO 4               | To Understand the various international and national treaties, and convention<br>that laid the foundation for environmental awareness and revolution globally.                 |
| CO 5               | To Elucidate and assess the Indian regulations on control and prevention of air pollution, water pollution; protection of forest and wildlife, and public liability insurance. |

| Paper Code | CEE 502 |
|------------|---------|
|            |         |

| Paper Title        | Advanced Water Treatment Technology                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>outcomes | Course Learning Outcomes are as listed below:                                                                                                                       |
| CO 1               | To understand the unit processes for assessment and the use of relevant methods for advanced water treatment, and to apply these to specific needs.                 |
| CO 2               | To consider the application of this in research projects, and to contribute to the development of new theories and methods in the field                             |
| CO 3               | To use knowledge from the discipline for scientific assignments and projects,<br>and to publish research results in recognized national and international channels. |
| CO 4               | To Develop conceptual schematics required for biological treatment of wastewater                                                                                    |

| Paper Code         | CEE 504                                                                                           |  |
|--------------------|---------------------------------------------------------------------------------------------------|--|
| Paper Title        | Advanced Wastewater Treatment Technology                                                          |  |
| Course<br>outcomes | Course Learning Outcomes are as listed below:                                                     |  |
| CO 1               | The management of residuals from water and wastewater treatment                                   |  |
| CO 2               | To understand the methods that are used for the design of a water and wastewater treatment plant. |  |
| CO 3               | To inculcate the basics concepts of waste water treatment, its design and management.             |  |

| Paper<br>Code      | CEE 504                                                                                                                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Paper Title        | Groundwater Pollution                                                                                                           |
| Course<br>outcomes | Upon successful completion students should be able to:                                                                          |
| CO 1               | To Identify the Types of pollutants in addition, air, water, soil pollution.                                                    |
| CO 2               | To Employ recent communication and information technologies effectively<br>in different tasks related to groundwater pollution. |
| CO 3               | To Learn methods to measure and analyze the published data concerned with pollution.                                            |

| Paper<br>Code      | CEE 508                                                                                                                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Paper Title        | Environmental Hydraulics                                                                                                                  |
| Course<br>outcomes | Upon successful completion students should be able to:                                                                                    |
| CO 1               | To explain collection and conveyance and to estimate quantity of wastewater.                                                              |
| CO 2               | To describe wastewater characteristics; explain preliminary and primary treatment processes and its design along with effluent standards. |
| CO 3               | To Explain the processes of biological treatment units for wastewater .                                                                   |

| CO 4 | To Describe low cost treatments, disposal methods and self purification capacity of the stream    |
|------|---------------------------------------------------------------------------------------------------|
| CO 3 | To Describe low cost treatments, disposal methods and self purification<br>capacity of the stream |

| Paper Code         | CEE 601                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------|
| Paper Title        | Industrial Wastewater Treatment Technology                                                                       |
| Course<br>outcomes | Upon successful completion students should be able to:                                                           |
| CO 1               | Distinguish between the quality of domestic and industrial water requirements and Wastewater quantity generation |
| CO 2               | Understand the industrial process, water utilization and waste water generation                                  |
| CO 3               | Acquire the knowledge on operational problems of common effluent treatment plants                                |
| <b>CO 4</b>        | Impart knowledge on selection of treatment methods for industrial wastewater                                     |
| CO 5               | Specify design criteria for physical, chemical, and biological unit operations                                   |

| Paper<br>Code | CEE 603 |
|---------------|---------|
|---------------|---------|

| Paper<br>Title     | Water quality Modelling                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------|
| Course<br>outcomes | Upon successful completion students should be able to:                                                      |
| CO 1               | Understand the idea, methodology and basic tools of water quality modelling                                 |
| CO 2               | Understand the different modelling approaches, their scope and limitations                                  |
| CO 3               | Understand the fate and transport of pollutants in different water bodies                                   |
| CO 4               | Become mindful of a wide range of applications of modelling in water resources management & decision making |
| CO 5               | To bring about a thorough exposure to shoring, scaffolding and formwork procedures in construction.         |



# **Department of Civil Engineering**

# **SYLLABI**

(Session 2021-22)

# Of



# M.Tech ENVIRONMENTAL ENGINEERING

# (Civil Engineering)

Department of Civil Engineering, SGVU

Session 2021-22

#### **Department Of Civil Engineering**

#### Teaching and Examination Scheme for M.Tech EE.

### Session 2021-22

I YEAR

I SEM

|      |          |                                                       | •      |     |        |     |       |           |     |
|------|----------|-------------------------------------------------------|--------|-----|--------|-----|-------|-----------|-----|
|      |          |                                                       |        | C   | ontac  | t   |       | Weightage |     |
| S.NO | Course   | Course Name                                           | Credit | Нот | ars/We | eek | Exam  | (%)       |     |
| 2.10 | Code     |                                                       | orean  | _   |        |     | Hours |           |     |
|      |          |                                                       |        | L   | T/S    | Р   |       | СЕ        | ESE |
| PROC | RAMME    | CORE                                                  |        |     |        |     |       |           |     |
|      |          |                                                       |        |     |        |     |       |           |     |
| 1    | CEE 501  | Environmental Chemistry and Microbiology              | 4      | 3   | 1      | 0   | 3     | 40        | 60  |
| 2    | CEE 503  | Air Pollution and Control                             | 4      | 3   | 1      | 0   | 3     | 40        | 60  |
| 3    | CEE 505  | Municipal Solid Waste Management                      | 4      | 3   | 1      | -   | 3     | 40        | 60  |
| 4    | CEE 507  | Environmental Impact Assessment                       | 4      | 3   | 1      | 0   | 3     | 40        | 60  |
| 5    | CEE 551  | Water Quality Lab                                     | 2      | 0   | 0      | 3   |       | 40        | 60  |
| UNIV | ERSITY C | ORE                                                   |        | •   |        | •   |       |           |     |
| 6    | PC 501   | Proficiency in co-curricular activities               | 2      | -   | -      | -   | -     | 100       |     |
| 7    | EM 501   | Employability skills                                  | 1      | 0   | 2      | 0   | 3     | 100       |     |
| 8    | FD 102   | Foundation Course                                     | 1      | 1   | 0      | 0   | 3     | 25        | 75  |
| UNIV | ERSITY E | CLECTIVE                                              |        |     |        |     |       |           |     |
| 9    |          | Students can opt from the list of university Elective |        |     |        |     |       |           |     |
|      |          | Total                                                 | 22     | 13  | 6      | -   | -     | -         | -   |
|      |          | •                                                     |        |     |        |     | •     |           |     |

Theory (17 Credit) + Lab (03 Credit) + Proficiency in Co-curricular Activities (2 Credit) + Employability skills (01 Credit) = 23 Credit

L= Lecture

T=Tutorial

**CE=Continuous Evaluation** 

S= Seminar

P= Practical

ESE= End Semester Examination

Session 2021-22

# Department Of Civil Engineering

# Teaching and Examination Scheme for M.Tech EE.

#### Session 2021-22

I YEAR

II SEM

|        | Course     | Course Name                                              | Credits | C<br>H | Contact<br>Hrs/ Wk. |   | Contact<br>Hrs/ Wk. |     | Contact<br>Hrs/ Wk. |  | Contact<br>Hrs/ Wk. |  | Contact<br>Hrs/ Wk. |  | Contact<br>Hrs/ Wk. |  | Exam. | Weig | ght age<br>(%) |
|--------|------------|----------------------------------------------------------|---------|--------|---------------------|---|---------------------|-----|---------------------|--|---------------------|--|---------------------|--|---------------------|--|-------|------|----------------|
| S. No. | Code       | course maine                                             | orcuits |        |                     |   | Hours               | CE  | ESE                 |  |                     |  |                     |  |                     |  |       |      |                |
|        |            |                                                          |         | L      | T/S                 | Р |                     |     |                     |  |                     |  |                     |  |                     |  |       |      |                |
| PROG   | RAMME      | CORE                                                     |         |        |                     |   |                     |     |                     |  |                     |  |                     |  |                     |  |       |      |                |
| 1      | CEE<br>502 | Advanced Water Treatment<br>Technology                   | 4       | 3      | 1                   | - | 3                   | 40  | 60                  |  |                     |  |                     |  |                     |  |       |      |                |
| 2      | CEE<br>504 | Advanced Wastewater Treatment<br>Technology              | 4       | 3      | 1                   | - | 3                   | 40  | 60                  |  |                     |  |                     |  |                     |  |       |      |                |
| 3      | CEE<br>506 | Groundwater Pollution                                    | 4       | 3      | 1                   | - | 3                   | 40  | 60                  |  |                     |  |                     |  |                     |  |       |      |                |
| 4      | CEE<br>508 | Environmental Hydraulics                                 | 4       | 3      | 1                   | - | 3                   | 40  | 60                  |  |                     |  |                     |  |                     |  |       |      |                |
| 5      | CEE<br>552 | Practical Training (4 Weeks)                             | 3       | -      | -                   | - | 3                   | 60  | 40                  |  |                     |  |                     |  |                     |  |       |      |                |
| 6      | CEE<br>554 | Wastewater Analysis Lab                                  | 1       | -      | -                   | 2 | 3                   | 60  | 40                  |  |                     |  |                     |  |                     |  |       |      |                |
| 7      | CEE<br>556 | SEMINAR                                                  | 1       | -      | -                   | 3 | 3                   | 60  | 40                  |  |                     |  |                     |  |                     |  |       |      |                |
| UNIVI  | ERSITY C   | ORE                                                      |         |        |                     |   |                     |     |                     |  |                     |  |                     |  |                     |  |       |      |                |
| 8      | PC 502     | Proficiency in co-curricular activities                  | 2       | -      | -                   | - | -                   | 100 | -                   |  |                     |  |                     |  |                     |  |       |      |                |
| 9      | EM 502     | Employability skills                                     | 1       | 0      | 2                   | 0 | 3                   | 100 |                     |  |                     |  |                     |  |                     |  |       |      |                |
| 10     | FD 104     | Foundation Course                                        | 1       | 1      | 0                   | 0 | 3                   | 25  | 75                  |  |                     |  |                     |  |                     |  |       |      |                |
| UNIVI  | ERSITY E   | LECTIVE                                                  |         |        |                     |   |                     |     |                     |  |                     |  |                     |  |                     |  |       |      |                |
| 11     |            | Students can opt from the list of<br>university Elective |         |        |                     |   |                     |     |                     |  |                     |  |                     |  |                     |  |       |      |                |

|            | Total                                                                                                                                   |              | 25     | 13     | 7       | 5     |         |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------|---------|-------|---------|--|--|--|
| Theory (18 | Theory (18 Credit) + Lab (04 Credit) +Proficiency in Co-curricular Activities (2 Credit) + Employability skills (01 Credit) = 25 Credit |              |        |        |         |       |         |  |  |  |
|            | L= Lecture                                                                                                                              | T=Tutorial   | CE=Coi | ntinuo | us Eval | uatio | 'n      |  |  |  |
|            | S= Seminar                                                                                                                              | P= Practical | ESE= E | nd Sen | nester  | Exam  | ination |  |  |  |

#### **Department Of Civil Engineering**

### Teaching and Examination Scheme for M.Tech EE.

#### Session 2021-22

#### II YEAR

III SEM

|        | Course     |                                                       |         | Contact<br>Hrs/ Wk. |   | Contact<br>Hrs/ Wk. |       | Contact<br>Hrs/ Wk. |     | Contact<br>Hrs/ Wk. |  | Contact<br>Hrs/ Wk. |  | Weight age<br>(%) |  |
|--------|------------|-------------------------------------------------------|---------|---------------------|---|---------------------|-------|---------------------|-----|---------------------|--|---------------------|--|-------------------|--|
| S. No. | Code       | Course Name                                           | Credits |                     |   |                     | Hours | CE                  | ESE |                     |  |                     |  |                   |  |
|        |            |                                                       |         | L                   | Т | Р                   |       |                     |     |                     |  |                     |  |                   |  |
| PROG   | RAMME      | CORE                                                  |         | •                   |   | •                   |       |                     |     |                     |  |                     |  |                   |  |
| 1      | CEE<br>601 | Industrial Wastewater Treatment<br>Technology         | 4       | 3                   | 1 | -                   | 3     | 40                  | 60  |                     |  |                     |  |                   |  |
| 2      | CEE<br>603 | Water Quality Modelling                               | 4       | 3                   | - | -                   | 3     | 40                  | 60  |                     |  |                     |  |                   |  |
| 3      | CEE<br>661 | Practical Training (4 Weeks)                          | 4       | -                   | - | -                   | 3     | 40                  | 60  |                     |  |                     |  |                   |  |
| 4      | CEE<br>663 | SEMINAR                                               | 3       | -                   | - | 5                   | -     | 60                  | 40  |                     |  |                     |  |                   |  |
| UNIVI  | ERSITY C   | ORE                                                   | •       |                     |   |                     |       |                     |     |                     |  |                     |  |                   |  |
| 5      | PC 601     | Proficiency in co-curricular activities               | 2       | -                   | - | -                   | -     | 100                 | -   |                     |  |                     |  |                   |  |
| UNIVI  | ERSITY E   | CLECTIVE                                              |         | 1                   |   |                     |       |                     |     |                     |  |                     |  |                   |  |
|        |            | Students can opt from the list of university Elective |         |                     |   |                     |       |                     |     |                     |  |                     |  |                   |  |
|        |            | Total                                                 | 17      | 6                   | 1 | 5                   |       |                     |     |                     |  |                     |  |                   |  |
|        |            | Grand total                                           |         | 12                  |   |                     |       |                     |     |                     |  |                     |  |                   |  |

Theory (8 Credit) + Lab (07 Credit) +Proficiency in Co-curricular Activities (2 Credit) = 17Credit

L= Lecture

D- Due el

**CE=Continuous Evaluation** 

S= Seminar

P= Practical

T=Tutorial

ESE= End Semester Examination

Department of Civil Engineering, SGVU

Session 2021-22

# Department Of Civil Engineering

### Teaching and Examination Scheme for M.Tech EE.

#### Session 2021-22

#### II YEAR

IV SEM

|           | Course | C                          | Caralita | Сог | ntact H | rs/ Wk. | Exam  | Weight<br>age (%) |     |
|-----------|--------|----------------------------|----------|-----|---------|---------|-------|-------------------|-----|
| S.<br>No. | Code   | Course Name                | Credits  |     |         |         | Hours | CE                | ESE |
|           |        |                            |          | L   | Т       | Р       |       |                   |     |
|           |        | A: Practical And Sessional |          |     |         |         |       |                   |     |
| 1         | DI 602 | DISSERTATION               | 18       | -   | -       | 4       | 3     | 60                | 40  |
|           |        | Total                      | 18       | 0   | 0       | 4       |       |                   |     |
|           |        | Grand total                | 16       |     |         |         |       |                   |     |

#### CEE 501 ENVIRONMENTAL CHEMISTRY AND MICROBIOLOGY

C(L,T,P) = 4 (3,1,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                      | Hours |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION :</b> Objective, scope and outcome of the course                                                                                                                                                                                     | 7     |
| II   | <b>Physical Chemistry:</b> Thermodynamics, Free Energy, osmosis, dialysis, law of mass action, chemical equilibrium and basic concepts of chemical kinetics.                                                                                         | 7     |
| III  | <b>Biochemistry:</b> Biochemistry of carbohydrates, proteins, fats and oils, Enzymes, buffers, EMP and TCA pathways, electron transport mechanism and oxidation phosphorylation, photosynthesis.                                                     | 7     |
| IV   | <b>General Chemistry:</b> Henry's law, activity coefficients, ionization of weak bases, and acids, solubility product, common ion effect, ways of shifting chemical equilibria, Adsorption isotherms                                                 | 7     |
| v    | <b>Microbiology:</b> Morphology and classification of bacteria, algae, fungi and viruses, elements of microscopy, Microorganisms of various aerobic and anaerobic biological waste treatment units, culture media for microorganisms, sterilization. | 8     |
|      | Total                                                                                                                                                                                                                                                | 36    |

- 1. B.S Bhal, GD Tuli and Arun Bhal, Essentials of Physical Chemistry, S. Chand & Co Ltd. New Delhi, 2003
- 2. Arun Kumar De, Environmental Chemistry, 5th ed, New Age International (P) Ltd, New Delhi
- 3. Stainer, R.Y., Ingrahum, J.L., Wheelis, M.C. and Painter, P.R. General Microbiology, MacMillan Edition Limited, London, 1989.
- 4. Pichai R. and Govindan, V.S., Edition, Biological processes in pollution control Anna University, Madras, 1988.

#### **CEE 503**

## AIR POLLUTION AND CONTROL

### C (L,T,P) = 4 (3,1,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                      | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course                                                                                                                                                                                                                      | 7     |
| п    | Sources and classification: Classification of aerosols, gases vapours, natural air pollutants, properties of air pollutants.<br>Meteorology: Factors influencing air pollution, wind roses, plume behaviour, estimation of plume rise. Air pollution standards and indices.          | 8     |
| ш    | Air Quality Monitoring: Objectives, time and space variability in air quality, air sampling design, analysis and interpretation of air pollution data.<br>Air Pollution Modelling: Dispersion models – Basquill model, ASME model, Gaussian plume model assumptions, limitations.    | 8     |
| IV   | <b>Effects of Air Pollutants</b> : Effect on man, material, vegetation, art treasurers. Air pollution disasters, Economic effects.<br>Global effects of Air Pollutants: Green house effect, acid rains, ozone hole, heat islands.                                                    | 7     |
| v    | <b>Particulate control Technology</b> : Dilution, control at source by equipments, setting chambers, cyclones, fabric filters, electrostatic precipitators, scrubbers.Control of Gaseous Pollutants: Adsorption, absorption, combustion, condensation. Indoor air pollution control. | 7     |
|      | Total                                                                                                                                                                                                                                                                                | 37    |

- 1. Wark K. & Warner C.F., Air Pollution its origin and Control.
- 2. Martin Craford (1980), Air Pollution Theory, Tata McGraw Hill Publishers
- 3. Stern A.C. (1968) Air Pollution, Vol. 1 5, Academic Press, New York.
- 4. Perkins H.C. (1974) Air Pollution, Mc Graw Hill Kogakusha Ltd., Tokyo

#### HS 501

#### SOFT SKILLS TRAININIG I

# C (L, T, P) = 1 (1,1,0)

| Unit | Course Contents                                                                                                                                                                                                    | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | Spoken English – PICTURE (p=pronunciation, I=inflection, C=Clarity & courtesy, T=Tone,<br>U=Understanding and feedback, R=Rate of speech and Repeatition, E=Emphasis), Body<br>Language Training, Active Listening | 8     |
| II   | Introduction to business terms, Economic Times Reading, Communication skills                                                                                                                                       | 8     |
| III  | Johari Window Training, Firo-B Training, Relationship Management                                                                                                                                                   | 10    |
| IV   | Role Plays, Conflict Management                                                                                                                                                                                    | 7     |
| V    | I'm OK U'r OK Training, Time Management Training                                                                                                                                                                   | 6     |
|      | Total                                                                                                                                                                                                              | 39    |

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                        | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course.<br>General: Problems Associated With Solid Waste Disposal.<br>Generation of Solid Waste: Goals and Objectives of solid Waste Management, Classification of<br>Solid Waste, Factors Influencing Generation of Solid Waste, Characteristics of Solid Waste.<br>Analysis of Solid Waste. | 8     |
| п    | <b>Onsite Handling, Storage and Processing</b> : Public Health and Aesthetics, Onsite handling, Onsite Storage, Dust bins, Community Containers, Container Locations Onsite Processing methods.                                                                                                                                                        | 7     |
| ш    | <b>Solid Waste Collection, Transfer and Transport</b> : Collection Systems, Equipment and Labour Requirement, Collection Routes, Options for Transfer and Transport Systems.                                                                                                                                                                           | 8     |
| IV   | <b>Processing and Disposal Methods</b> : Processing Techniques and Methods of Disposal,<br>Sanitary Land filling, Composting and Incineration, Bioremediation.                                                                                                                                                                                         | 7     |
| v    | <b>Recovery of Resources, Conversion Products and Energy</b> : Material Recovery, Energy<br>Generation and Recovery Operation, Reuse in other Industry.<br>Industrial Solid Waste: Nature, Treatment and Disposal methods.                                                                                                                             | 8     |
|      | Total                                                                                                                                                                                                                                                                                                                                                  | 38    |

- 1. George Tchobanoglous, Frank Krieth, Handbook of Solid Waste Management, 2nd edition, McGraw Hill Publication, 2002
- 2. T. V. Ramachandran, Management of Municipal Solid Waste, Centre for Ecological Sciences, IISc Karnataka Research Foundation, 2009
- 3. George Techobanoglous et al, "Integrated Solid Waste Management", McGraw-Hill Publication, 1993.

**CEE 507** 

#### ENVIRONMENTAL IMPACT ASSESSMENT

C (L,T,P) 4(3,1,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>Introduction</b> :Objective, scope and outcome of the course<br>Introduction & Concepts of EIA: effect of human activity on environment, concept of ecosystem<br>imbalances, definition of E.I.A, E.I.S, E.M.P, industrial policy of the Govt. of India.<br>International Protocols, Treaties and Conventions: Stockholm and Basal convention,<br>Copenhagen conference, Rio-Earth summit, Indian Scenario: Guidelines of MoEF and CPCB. | 7     |
| II   | <b>Methodologies for EIA</b> : preliminary assessment, quantification, comparison of alternatives and comprehensive E.I.As using Ad hoc, Overlays, Checklist, Matrix and Network methods.                                                                                                                                                                                                                                                   | 7     |
| ш    | <ul> <li>Prediction and assessment of impacts on air, water, biota, noise, land, cultural and socio-<br/>economic environment.</li> <li>Water quality impact: Water quality criteria, standards and indices, Impacts on water quality<br/>of development projects.</li> </ul>                                                                                                                                                               | 7     |
| IV   | Air quality impact: Air quality criteria, standards and indices, air quality impact of industry transport systems<br>Noise: Effects of noise on people, noise scales and rating methods, Noise barriers, estimating transportation noise impacts.<br>Land Pollution due to construction activities.<br>Biota: Impact on fauna and flora, mitigation measures, alternatives.                                                                 | 7     |
| v    | <b>Cultural and socio economic impacts</b> : effect of developmental projects on cultural and social settings and economic profile of the community. Energy impact: EIA of hydro, thermal and nuclear power plants<br>Public Participation in environmental decision making, Some Case Studies of EIA.                                                                                                                                      | 8     |
|      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36    |

- 1. Burke, G., Singh, B.R., and Theodore, L. Handbook of Environmental Management and Technology, 2nd Ed., John Wiley & Sons, 2000.
- 2. Kulkarni, V. and Ramachandra, T.V., "Environment Management", TERI Press. 2009.
- $3. \hspace{0.1in} {\rm MoEF\ Guidelines\ and\ amendments\ as\ updated\ on\ http://moef.gov.in}$

#### WATER QUALITY LAB

| COURSE CONTENTS                                                                                  | Hours |
|--------------------------------------------------------------------------------------------------|-------|
| Introduction to Standards, Sampling, Collection & Preservation of Samples                        | 3     |
| Determination of pH, Colour and Odour for a water sample                                         | 3     |
| Determination of Acidity and Alkalinity for a water sample                                       | 3     |
| Determination of Conductivity for a water sample                                                 | 3     |
| Determination of Calcium, Magnesium and Total Hardness for a water sample                        | 3     |
| Determination of Turbidity for a water sample                                                    | 3     |
| Determination of Chlorides for a water sample                                                    | 3     |
| Determination of Nitrates for a water sample                                                     | 3     |
| Determination of Optimum Dosage of Alum using Jar test apparatus.                                | 3     |
| Determination of available chlorine in bleaching powder and Residual Chlorine for a water sample | 3     |

Recommended Text / Reference Books / Manuals:

- 1. Lab Manual, ISO 14001 Environmental Management, Regulatory Standards for Drinking Water and Sewage disposal.
- 2. Clair Sawyer and Perry McCarty and Gene Parkin, "Chemistry for Environmental Engineering and Science", McGraw-Hill Series in Civil and Environmental Engineering.
- 3. Guide manual: Water & wastewater analysis, Central Pollution Control Board, Govt. of India.
- 4. APHA standard methods for the examination of water and wastewater -20th edition.
- 5. Water supply engineering by S.K. Garg- 30th Edition, Khanna Publications, New Delhi
- 6. Environmental Engg. Laboratory Manual by R.P. Mathur

#### CE 502

#### ADVANCED WATER TREATMENT TECHNOLOGY

#### C (L,T,P) = 3(3,0,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                | Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course.<br>Water Quality Parameters: Significant water quality parameters for Municipal Water Supplies.<br>Standards and Guidelines of Water for drinking purposes.   | 8     |
| п    | <b>Water Treatment</b> : Settling types, Discrete particle settling, Flocculent Settling, Theory of Tube Settlers, Plate Settlers, Choice of Clarifires, Ideal sedimentation Tank Concept.                                     | 8     |
| ш    | <b>Coagulation</b> : Theory, Chemistry and Mechanism of Coagulants, Coagulant Aids, Flocculation,<br>Orthokinetic, Perikinetic, Mean Velocity Gradient, Long Rectangular Basin, Circular Basin<br>Design of Clariflocculators. | 8     |
| IV   | <b>Filtration:</b> Theory, Carman Kozeny equation, Filter Arrangement, Filter operation.<br>Disinfection: Types, Mechanisms of, Factors Influencing Efficiency of<br>Disinfectants, Chlorine Chemistry, Chlorinator.           | 7     |
| v    | <b>Miscellaneous Methods</b> : Process and Application of Ion Exchange, Adsorption, Reverse Osmosis, Electro-dialysis.                                                                                                         | 7     |
|      | Total                                                                                                                                                                                                                          | 38    |

- 1. AWWA, (1971), "Water Quality and Treatment "McGraw Hill.
- $\label{eq:constraint} \textbf{2. CPHEEO Manual, (1991), "Water Supply and Treatment", GO Publications.}$
- 3. Peavy, H.S., Rowe and Tchobonoglous, G., (1985), "Environmental Engineering", McGraw Hil

CE 504 ADVANCED WASTEWATER TREATMENT TECHNOLOGY C (L,T,P) =3(3,0,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course<br>Wastewater Characteristics and their significance. B.O.D., Methods of Determination of K and<br>Lo, Nitrification, Comparison of various methods of Determination of Organics.                                                                                                                                                                                                       | 8     |
| II   | <b>Screens</b> , Grit Chamber, Floatation, Sedimentation, Zone Settling, Classification of biological Wastewater Treatment Process, Design of PST and SST.                                                                                                                                                                                                                                                                                              | 7     |
| III  | Aeration of Wastewater, Oxygen Transfer : Process, Kinetic Relationship of Bio-Kinetic<br>Parameters, Design Procedure, Modifications of A.S.P., Extended Aeration, Contact<br>Stabilization, Step aeration, Tapered aeration,<br>Trickling Filters: Theory, Physical Arrangements, Design of ponds and Lagoons. Theory &<br>Design of Rotating Biological Contactors, Concepts of Sequencing Batch Reactors Anaerobic &<br>Filter UASB Sewage Farming. | 7     |
| IV   | <b>Sludge</b> : Sources, Characteristics, Volume- Mass relationship, Sludge Stabilization, Conventional and High Rate Digesters, Gas Production, Collection, Disposal of Sludge.                                                                                                                                                                                                                                                                        | 7     |
| V    | Tertiary treatment: Nitrogen removal, Phosphorus Removal.                                                                                                                                                                                                                                                                                                                                                                                               | 7     |

- 1. "Water-wastewater engineering", Fair G.M., Geyer J.G and Okun
- 2. Water Supply and Sanitary Engineering G.S. Bridie & J.S. Bridie, Dhanpat Rai & Sons, New Delhi

## CEE 506 **GROUNDWATER POLLUTION** C(L,T,P) = 3(3,0,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                               | Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course<br>WATER QUALITY: Natural occurrence of common solutes in water, Suspended & dissolved<br>constituents, Principle chemical constituents in ground water, water quality criteria for<br>drinking, Agricultural and Industrial uses, Quality of ground water resources.                         | 7     |
| Π    | SOURCES OF POLLUTION: Various sources & causes of ground water pollution. Activities generating contaminants, Types of contaminants & Mechanism of ground water pollution                                                                                                                                                                                     | 8     |
| III  | <b>MOVEMENT OF POLLUTANTS</b> : Principles of Pollutant movement (Darcy's law, Hydraulic<br>Conductivity, Anisotropic Aquifer), Attenuation of pollution in the ground, Pollution dispersion<br>in the ground. Ground water movement in saturated zone. Factors affecting Pathogen movement<br>& Survival, Transportation equation, ground water remediation. | 7     |
| IV   | <b>PROBLEMS OF TOTAL DISSOLVED SOLIDS</b> : Fluoride &Nitrate Pollution of ground water, Natural occurrence of Nitrates & sources related to man's activities. Groundwater Legislation in India and Case histories, Salt water intrusion and related artificial recharge studies.                                                                             | 8     |
| V    | <b>MONITORING GROUNDWATER QUALITY</b> : General principles, Monitoring Management of Ground Water Quality, Section of Parameters for Monitoring. Economic considerations in ground water quality management.                                                                                                                                                  | 8     |
|      | Total                                                                                                                                                                                                                                                                                                                                                         | 38    |

- 1. Raghunath, Groundwater & Well Hydraulics, Wiley Eastern Ltd, New Delhi, 1992
- 2. Groundwater Pollution, Volume 41st Edition by J.J. Fried.

**CEE508** 

ENVIRONMENTAL HYDRAULICS

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                                                                    | Hours |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course<br>Evaporation and infiltration: measurement and estimation of evaporation from land and water<br>surfaces. Infiltration, factors affecting infiltration. Hydrograph analyses: Surface runoff,<br>overland flow, factors affecting runoff. Rational formula. Hydrograph analyses, Unit<br>hydrograph, channel and storage routing. | 8     |
| II   | <b>Groundwater Development</b> : Well development, Artificial recharge, Salinity of Ground water, Ground water pollution, Infiltration Galleries                                                                                                                                                                                                                                                   | 7     |
| III  | <b>Water Distribution System</b> : General design requirements, Methods of analyses, control of water hammer in long distance transmission. Introduction to optimization of water distribution system.                                                                                                                                                                                             | 7     |
| IV   | Sewerage system design: General design principles of sewers, Recent development in sewerage system design. Urban Storm Drainage: Introduction to drainage problems in difficult climates. Planning concepts, Rainfall intensity-duration-frequency curves. Design of drainage system elements, control of storm water pollution.                                                                   | 7     |
| V    | Water and wastewater pumping: Classification, selection, installation, operation and maintenance of pumps for water and wastewater pumping, electrical motors, choice and installation, starters and other accessories.                                                                                                                                                                            | 7     |
|      | Total                                                                                                                                                                                                                                                                                                                                                                                              | 36    |

- 1. McGhee, Water supply and sewerage, McGraw Hill, New Delhi (1991).
- 2. Wurbs RA and James WP, Water resources engineering, PHI New Delhi (2002).
- 3. Nathanson, JA, Basic environmental technology, PHE, New Delhi (2003).
- 4. A. Vermjit, "Theory of Groundwater Flow" MacMillan, 1970
- 5. H. Boluwer, "Groundwater Hydrology" McGraw Hill, Kogakusha, 1979

#### HS 502

#### SOFT SKILLS TRAININIG II

| Unit | Course Contents                                | Hours |
|------|------------------------------------------------|-------|
| Ι    | Making impact making business presentations    | 6     |
| II   | Team Management and Collaborative Work Culture | 8     |
| III  | Training in Anchoring and Public Speaking      | 6     |
| IV   | Emotional Intelligence Training                | 7     |
| V    | Business Games, Business Etiquettes            | 10    |
|      | Total                                          | 37    |

#### **CEE 554**

# WASTEWATER ANALYSIS LAB

#### C (L, T, P) = 1(0,0,2)

| S.No. | List of Experiments                                              | Hours |
|-------|------------------------------------------------------------------|-------|
|       | Measurement of Wastewater / Sewage Parameters                    |       |
| 1     | Determination of Total Solids in sewage sample                   |       |
| 2     | Determination of Dissolved and Suspended Solids in sewage sample |       |
| 3     | Determination of Volatile and Fixed Solids in sewage sample      |       |
| 4     | Determination of Settleable Solids in sewage sample              |       |
| 5     | Determination of Dissolved Oxygen in wastewater sample           |       |
| 6     | Determination of BOD in wastewater sample                        |       |
| 7     | Determination of COD in wastewater sample                        |       |
| 8     | Determination of Heavy Metals in wastewater sample               |       |
| 9     | Introduction to Microscope, its types & applications             |       |
| 10    | Introduction to MPN and MF techniques                            |       |

#### CEE 601 INDUSTRIAL WASTEWATER TREATMENT TECHNOLOGY C (L,T,P) = 4 (3,1,0)

| UNIT | COURSE CONTENTS                                                                                 | Hours |
|------|-------------------------------------------------------------------------------------------------|-------|
| I    | INTRODUCTION :Objective, scope and outcome of the course                                        |       |
|      | General: Comparative study of industrial waste water with municipal wastewater,                 | 7     |
|      | Industrial wastewater problems in India: Effects of discharges of Industrial Waste of Receiving |       |
|      | Bodies of Water, Land and Sewer. Effluent and Stream Standards. Historical Development of       |       |
|      | law related to environmental Protection, Salient feature of Water Act- 1974, Air Act-1981 and   |       |
|      | Environmental (Protection) Act -1986                                                            |       |
| II   | Specific Industrial Treatment Processes: Neutralization, Equalization and                       |       |
|      | Proportioning, Volume and strength reduction                                                    |       |
|      |                                                                                                 |       |
|      |                                                                                                 | 8     |
|      |                                                                                                 | 0     |
| III  | Raw materials, Water requirements, Process Characteristics, Composition, effects and            |       |
|      | treatment, flow sheet of Industrial Wastewaters generated from: Textile (Cotton and Synthetic), |       |
|      | tannery, Pulp and Paper, Dairy, Metal Plating (Chromium and Cyanide problem), Slaughter         |       |
|      | house                                                                                           | 0     |
|      |                                                                                                 | 0     |
| IV   | Distillery, Dyeing and printing, Fertilizer, Copper & Cement Industry, Provision of             | 7     |
|      | various Indian Standards for above Industries                                                   |       |
|      |                                                                                                 |       |
| V    | Potential of Wastewater Recycle and Reuse in Industries, Concept of Common Effluent             |       |
|      | Treatment Plants                                                                                |       |
|      |                                                                                                 |       |
|      |                                                                                                 | 7     |
|      |                                                                                                 | '     |
|      | Total                                                                                           | 37    |
|      |                                                                                                 |       |

- 1. Mark J. Hammer, Mark J. Hammer, Jr., "Water & Wastewater Technology", Prentice Hall of India.
- 2. N.L. Nemerrow Theories and practices of Industrial Waste Engineering.
- 3. C.G. Gurnham Principles of Industrial Waste Engineering.
- 4. Mark J. Hammer, Mark J. Hammer, Jr., "Water & Wastewater Technology", Prentice Hall of India.
- 5. N.L. Nemerrow Theories and practices of Industrial Waste Engineering.
- 6. C.G. Gurnham Principles of Industrial Waste Engineering.

WATER QUALITY MODELLING

#### C(L,T,P) = 3(3,0,0)

| UNIT | COURSE CONTENTS                                                                                                                                                                                                                                                                                                      | Hours |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | <b>INTRODUCTION</b> :Objective, scope and outcome of the course<br>Introduction: concepts of scale in natural systems, brief review of the fate processes in the<br>environment, examples of natural systems, principles of model formulation, calibration,<br>validation, error estimation and sensitivity analysis | 7     |
| II   | <b>Derivation of generalized</b> mass balance equation for contaminants in incompressible fluid(water) in the non-inertial frame of reference                                                                                                                                                                        | 7     |
| III  | <b>River Modelling</b> : one dimensional advection-dispersion-reaction model, river properties<br>and estimation of parameters, different forcing situations (point, non-point, aerial sources<br>and sinks), sediment water interaction                                                                             | 8     |
| IV   | <b>Estuary Modelling</b> : types and properties, flow characterization, advection-dispersion models, salt gradient box models; Lake Modelling: box models, generalized models, special considerations for large lakes, sediment mixing and interaction with water column                                             | 8     |
| V    | Wetlands: box models for flow, equilibrium and kinetic geochemical models for red-ox reactions, transport of heavy metals                                                                                                                                                                                            | 8     |
|      | Total                                                                                                                                                                                                                                                                                                                | 38    |

# **Reference Books:**

**CEE 603** 

- 1. Water Quality Modeling for Rivers and Streams by Benedini, Marcello & Tsakiris, George
- 2. Water Quality Modelling for Rivers, Streams and Estuaries by Dr. R. Manivanan